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Abstract 

We continue our investigation of distributions on a topos, the symmetric monad, and com- 
plete spreads. Our tool is the pure dense/complete spread, or comprehensive, factorization of a 
geometric morphism. We obtain, among other results, a characterization of the algebras for the 
symmetric monad that translates into a “Waelbroeck” theorem for toposes. We also investigate 
the connection between complete spreads and the fundamental group of a topos. @ 1998 Elsevier 
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1. Introduction 

The purpose of this paper is to pursue our previous investigations [6] of distributions 

on a topos [14, 151, of the symmetric monad [4, 51, and of complete spreads [8, lo]. 

The pure dense/complete spread factorization of a geometric morphism [6] is im- 

portant to our discussion. (For the purposes of this paper, we need only consider the 

case when the domain topos of the geometric morphism is locally connected [2, 161.) 

We begin in Section 1 with a review of pure dense geometric morphisms and com- 

plete spreads, and we record some facts about them which will be used throughout the 

paper. Then in Section 2 the pure dense/complete spread factorization is interepreted 

as a “comprehensive factorization”, and compared with the work of Street and Walters 

[ 181. Closely related to comprehension is the notion of the density of a distribution 

(see [15]). In Section 3, we analyze density in terms of complete spreads. We use 
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this analysis to show in Section 7 that a locally connected topos whose connected 

components functor preserves products is simply connected. 

A probability distribution is a distribution which preserves the terminal object. In 

Section 4, we give an explicit construction of the probability distribution classifier in 

terms of the finite non-empty connected limit completion of a small category, thus 

answering a question left open in [6]. 

A theorem of Waelbroeck [19] says that the space of distributions (with compact 

support) on a smooth manifold is the free vector space on the manifold, relative to 

a certain class of test spaces (the “b-spaces”). Lawvere [14] has suggested that this 

result could be interpreted in other suitable contexts. Kock [12] has considered the 

question for an object in a ringed topos. The question for toposes has already been 

partly answered with the result that the symmetric topos is part of a monad, denoted 

by M, on the 2-category of toposes [6]. Further, in Sections 5 and 6, we show that for 

a topos &, the unit 6~ : d + Mb (the “Dirac delta”) has a universal property which can 

be interpreted as a “Waelbroeck” theorem for toposes (in two forms). This amounts 

to characterizing M-algebras as “linear” toposes, so that for a topos b, Mb becomes 

the free linear topos on &. Similar characterizations are obtained for the algebras of 

the lower bagdomain monad [ 111, and of the probability distribution classifier. We also 

show that if the carrier topos of an M-algebra is locally connected, then the topos has 

the stronger property of being totally connected. 

One should expect that an arbitrary locally constant object in a topos be a complete 

spread [8, 10, Proposition 5.181. We begin Section 7 by showing that this is indeed the 

case. It is then natural to consider the question of whether every local homeomorphism 

which is a complete spread is locally constant. We present some preliminary investi- 

gations of this question. In particular, we show that in a connected presheaf topos, the 

locally constant objects coincide with the complete spread objects. Thus, the funda- 

mental group [ 1, 71 of a connected presheaf topos coincides with its full subcategory 

of “clopens”. The general case remains an open question. 

We will often use the terms “pullback” and “comma object” in a 2-categorical con- 

text. We always mean bi-pullback and bi-comma object. 

1. Pure dense geometric morphisms and complete spreads 

The notions of a pure dense geometric morphism and of a complete spread are used 

throughout this paper. These notions are defined relative to a base topos, for which we 

reserve the symbol 9 For a topos 9 over Y, its structure geometric morphism will 

be denoted by g, as part of an obvious general rule. We occasionally omit these labels 

altogether. If 3 is locally connected, we denote the left adjoint of g* by g!. 

Let Szy denote the subobject classifier in the base topos 9 A geometric morphism 

d 3 9 over Y is said to be pure (respectively, dense) [6] if the unit s2~ -+ cp*cp*s2.4~ is 

an epimorphism (respectively, a monomorphism). We say that ‘p* preserves 

Y-coproducts if for every I E ,Y, the unit I + (p*(p*Z is an isomorphism. We have 
the following. 
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Proposition 1.1. Let & and 9 he locally connected toposes. Then the following are 
equivalent for a geometric morphism 8 s 9 bver Y. 

1. ‘p* preserves Y-coproducts. 
2. cp is pure and dense. 

3. The canonical morphism e! . ‘p* + f! is an isomorphism. 

Proof. This follows from [6], Proposition 2.7. 0 

Proposition 1.2. Consider a commutative triangle 

of toposes and geometric morphisms (over a base topos 9’). 

1. If r* is fuithful and p is pure, then q is pure. 

2. If r* is full and p is dense, then q is dense. 
3. If r is un inclusion and p* preserves Y-coproducts, then so does q*. 

Proof. Let I E 9 We have a commutative square 

‘*‘1 
r*f*I A r*r*q*q*g*I 

cl*1 - 4*4*9*1 
K 

where I?: f *I + pep* f *I 2 r*q*q*g*I is the unit of p* -I p*, and K is the unit of 

q* i q*. The morphism E is the counit of r* i r*, and the left-hand morphism is an 

isomorphism. For 1, we take I to be Q v’. We are assuming that r~ is an epimorphism. 

If r* is faithful, E is an epimorphism, so that K is also. For 2, again with I equal to 

s2~v, s is a (split) monomorphism, so that if q is a monomorphism, K is as well. The 

preservation of Y-coproducts by the direct image functors means that the counits rl 

and K are isomorphisms, so 3 is clear. 0 

It is well-known [2, 161 that locally connected geometric morphisms are stable under 

pullback. We use this fact in the proofs of the next two results. 

Proposition 1.3. Pure dense geometric morphisms and geometric morphisms whose 
direct image functors preserve Y-coproducts are stable under pullback along locally 
connected geometric morphisms. 
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Proof. Let 

be a pullback with y locally connected and p pure dense. Then /3 is locally con- 

nected and we have pig*” p*y!, or equivalently y*p* Sq*j*. By assumption, the 

unit f *Q + p*p* f *Q is an isomorphism, where 52 is the subobject classifier of 9 

Apply y* to this isomorphism to yield 

This isomorphism is equal to the unit g*Q-+q*q*g*Q. Thus, q is pure dense. 

The above argument works also for geometric morphisms whose direct image func- 

tors preserve Y-coproducts. 0 

We recall [6] that a locally connected topos is said to be totally connected (re- 

spectively, to have totally connected components) if its connected components func- 

tor is left exact (respectively, preserves pullbacks). A locally connected topos is to- 

tally connected if and only if it has totally connected components and is also 

connected. 

Proposition 1.4. The class of geometric morphisms having totally connected compo- 

nents is closed under composition and under arbitrary pullback. 

Proof. Closure under composition is clear. For pullback stability, let 9 5 Y have 

totally connected components. Assume we are pulling back along a geometric mor- 

phism y. We can factor d as 9 5 9JI A Y such that d^ is locally connected and d^! 

is left exact. The object I is d! 1. There is Y/Z -% 9 over Y which is right adjoint 

to d^ (p* = d! ). We know that the pullback geometric morphism Y’d is locally con- 

nected, but we must show that (y’d)! preserves pullbacks. We have y”a%‘y%, and 

y*Z E(y’d)!(l). A pullback of an adjoint pair is again an adjoint pair. This applies to 

d-l p, so that (y’d)! is isomorphic to (y”p)*, whence left exact. Thus, (y#d)! preserves 

pullbacks. 0 

The notion of a complete spread is the complement of pure dense; on the one hand, 

complete spreads and pure dense geometric morphisms are a factorization system on 

Top9 [6, Theorem 2.151, and on the other, the notion of complete spread is to pure 

dense as closed is to dense in topology. For this paper, the reader may take the 
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following as the definition of a complete spread. Let 9 be a topos presented over Y by 

a site with underlying category C. Let d 3.9 denote an arbitrary geometric morphism 

over 9, where E is locally connected (we consider only complete spreads with locally 

connected domains). Consider the discrete opfibration D --% C corresponding to the 

functor C+FeT Y. A typical object of D is a pair (c,x), XE e!(cp*c). We say ‘p 

is a complete spread if the following square is a pullback in Top,~. 

In this diagram, u denotes the geometric morphism induced by D, and v is that induced 

by the flat functor V : D + & such that V(c,x) is the pullback 

1 - e*e!(qn*e). 
e*x 

The right-hand vertical arrow is the unit of e! -I e*. This definition of complete spread 

does not depend on the choice of site for the codomain topos [6, Proposition 2.111. 

Proposition 1.5. Complete spreads are stable under pullback along local homeomor- 

phisms. 

Proof. Let 9 -% B denote a complete spread (over 9) with 9 locally connected. Fix 

an object X E 5:. We wish to show that in the pullback 
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the geometric morphism cpx is a complete spread. Let (C,J) be an Y-site for %, and 

regard X as a discrete fibration X z C so that X can be taken as (the underlying 

category of) a site for %,M. Let D z C denote the discrete opfibration corresponding 

to the cosheaf d! ’ cp* . E in the following commutative diagram: 

The functor E’ sends an object (c,s) E X to the object EC LX. Let P : X + Y denote 

the cosheaf corresponding to cpx. The above diagram shows that P is isomorphic to 

d! . $* . F composed with X 2 C, so that the discrete opfibration corresponding to P 
is the pullback 

P -D 

P I 1 D 

X -c 
x 

of functors and small categories. Our aim is to show that 

is a pullback of toposes, where v is the geometric morphism induced by P. This square 

appears as the back face in the following commutative cube. The geometric morphism 
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u is that induced by D. 

The left, right, bottom and front faces are pullbacks, and therefore, so is the back face. 

This concludes the proof. 0 

2. Comprehension for distributions on toposes 

The comprehensive factorization considered by Street and Walters [ 181 arises from 

the comprehension schema [ 131 for a certain fibration, which we will denote by P, 
on the category of small categories Cat. For a small category B, the fiber P(B) is 

defined to be the category of Y-valued functors on B. Transition along a fimctor F 
between small categories is given by composition with F. This fibration has a terminal 

T (for each B, the terminal functor Ts), and also C (left Kan extension). That it 

has comprehension is a consequence of the fact that to an Y-valued functor there 

corresponds a discrete opfibration, as this constitutes the right adjoint to the functor 

Cat/B + P(B) 

assigning to a functor A 4 B, the functor Z,G(TA). Let k denote the functor C,E(TA), 
and {k} : D 4 B the discrete opfibration associated with k. Then the unit F + {k} 

is an initial functor A AD, unique with the property that {k} . QE F and that 

CQ(TA) E TD. Thus, the comprehensive factorization of F is its initial/discrete op- 

fibration factorization, hence the name. 

The pure dense/complete spread factorization [6] of a geometric morphism may also 

be regarded as “comprehensive”. Consider the fibration of distributions on the category 

IcTop., of locally connected toposes over 9 We denote this fibration by D. For a topos 

f;, the fiber D&T is defined to be the category of (Y-valued) distributions on G. For a 

geometric morphism d 3 g-, composition with cp* gives C+. The transition functor Dq 
is by definition the right adjoint of C, (coherence for the 04 is satisfied since it holds 

for the C,). The functors Dq exist since the fiber categories are locally presentable 

(e.g., they appear as a suitable coinverter [5]), and since the C, are cocontinuous). 

The fibration D has a terminal T. For each locally connected topos &, the terminal 

distribution Tt: is the connected components functor e!. The comprehension schema 
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requires for each locally connected topos 9, the existence of a right adjoint of the 

functor 

lcTopy/cF + DF (1) 

assigning to a geometric morphism d 5 9 over 9, the distribution C4(Tg) (this dis- 

tribution is equal to e!. cp* ). The functor (1) was considered in [6], and it was there ob- 

served that its right adjoint { .} exists. This right adjoint associates with a distribution p 

on F, a complete spread {p} : 9 -+ 9. In this way, we obtain the pure dense/complete 

spread factorization of a geometric morphism between locally connected toposes as a 

comprehensive factorization; a geometric morphism 8 2 9 is factored as {/~}.n, where 

p denotes C,(Tg), and 8 1? 9 is the pure dense unit. We summarize these remarks 

in the following: 

Theorem 2.1. Thefibration of distributions on locally connected toposes over Y sat- 
isfies the comprehension schema. The corresponding comprehensive factorization of a 
geometric morphism is its pure dense/complete spread factorization. 

Of course, the concepts of complete spread and pure dense apply to presheaf toposes 

[6, Example 2.16, 21. We have the following analysis of this case. We recall some 

facts, which are well-known, about the Karoubi envelope of a small category. If C 

denotes a small category, we shall denote its Karoubi envelope by KC. Its objects are 

the idempotents c L c of C, and its morphisms f 5 y are commutative diagrams as 

follows (which compose in an obvious manner). 

There is a fully faithful functor C -+ KC which sends an object c to the idempotent 

1,. This ftmctor induces by pullback an equivalence 

YKC E YC. (2) 

The pseudo-inverse of this equivalence associates with a discrete opfibration P z C 
the functor KP. KP is a discrete opfibration on KC, and in fact, for an idempotent e 

in C, 

KP(e)={x/ Pe(x)=x} ={x 13~ Pe(y)=x}. 
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The equivalence (2) says in particular that for a discrete opfibration P : P + C, the 

commutative square 

P - KP 

C - KC 

of functors and small categories is a pullback. 

Since K(C?P) z (KC)“P, the statements of the previous paragraph can be similarly 

expressed for discrete fibrations. 

The Karoubi envelope is in general not enough to recover the small category from 

its topos of presheaves (it is if Y has ‘choice’). The general case requires the stack 

completion of a category [3]. Consider the canonical embedding of a small category 

into its stack completion (which is not always small). 

D+is (3) 

This functor is a weak equivalence, and since Y is an Y-stack, composition with it 

induces an equivalence 

.Y LP 

of Y-indexed categories. For a discrete opfibration P --% D, the mnctor p is a discrete 

opfibration, and we have a pullback 

P - KP 

of hmctors and categories. This pullback combines with the previous one to give the 

following pullback, for a discrete opfibration P. 

- 
P - KP 
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Since Y”P is an Y-stack, composition with the opposite of (3) gives an equivalence 

and it follows that the previous square is a pullback for discrete fibrations as well. 

Finally, we recall [3] that the geometric morphism YAop -+ YBop induced by a functor 

F : A --+ B is an equivalence if and only if E is an equivalence. 

We are now ready to examine the pure dense/complete spread fa~to~zation of a 

geometric morphism between presheaf toposes induced by a small functor F in terms 

of the comprehensive factorization of F. We include the case when F is a discrete 

fibration, as it is of interest to us in Section 7. 

Proposition 2.2. Consider the geometric morphism f : YAop + YBop induced by a 
jiinctor F : A -+ B. Then we have the following. 

1. If F is a discrete o~~bration~ then f is a complete spread _v 
2. If f is a complete spread, then KF is a discrete opjibrution. 

3. If .f is a complete spread and if F is a discrete fibration, then F is a discrete 
o~~bration. 

4. f is pure dense if and only if F is initiul. 

Proof. 1. This follows immediately from the definition of a complete spread given in 

Section 1. 

2. The assumption that f is a complete spread amounts to the assumption that the 

geometric morphism q induced by the initial factor Q of the comprehensive factorization 

of F is an equivalence, as depicted in the following diagrams. 

The functor D is a discrete opfibration, Then E is a discrete opfibration, and FQ is _ 
an equivalence. Thus, KF must also be a discrete opfibration. 

3. By 2, E is a discrete opfibration. Under the assumption that F is a discrete 

fibmtion we have the pullback square 

A-KA 

F I I G 

B - KB 

so that in this case F must be a discrete opfibration 
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4. If f is pure dense, then the geometric morphism d is an equivalence, whence E 

is also an equivalence. Then D is an equivalence as it is the pullback of E along 

B + %%, and so F is initial. Conversely, if F is initial, then Fop is final, so that for 

a presheaf P on B, 

/hl 2 (f*p) ” !$ (p F"P) " + p. 

This says that ,f is pure dense (Proposition 1 .l ). 0 

Remark 2.3. A discrete fibration F on a small category B is at the same time a discrete 

opfibration if and only if for each morphism c 5 d in B, Fx is an isomorphism. We 

leave it to the reader to verify that if B is connected, such presheaves are exactly the 

locally constant presheaves on B (see 7.9). 

3. The density of a distribution 

In the classical theory of distributions, functions act on measures producing new 

measures. The Radon-Nikodym derivative “inverts” this action; it can be thought of 

as the density of a measure relative to another. Lawvere [15] explains: 

It is in terms of such “action” (or “multiplication”) of intensive quantities on exten- 

sive quantities that the role of the former as “ratios” of the latter must be understood. 

In this section we describe the density of a distribution on a topos. We will do this 

by considering a natural enrichment over sheaves that distributions possess. Then we 

pass to an action of sheaves on distributions by copowers which the density inverts. 

We denote the category of distributions on a topos & by DB, as in Section 2. 

However, here we consider DA as having the structure of an g-indexed category, 

i.e., of a fibration over R. For X an object of B, we take for the fibre (D&)X the 

category 0(&/X). The transition functor (DC?)’ + (D&)x along a morphism X - Y 

of d for this fibration is given by composition with the coproduct functor 8/X 3 8/Y. 

A detailed explanation of this structure on DB, and a proof of the following result are 

given in [9]. 

Theorem 3.1. DB is cocomplete and locu11~~ .small us un B-indexed cuteyory. 

In particular, DB has 8-copowers. The copower of a distribution p by an object X of 

R is a distribution which we denote by X.1.1. The following natural bijection expresses 

the universal property of the copower X.11. 

morphisms p . Cx 2.2 . z‘x in (06)’ 

morphisms X. p + /! in (Da)’ 

We have 

X+(F) = p(X x F), F E 8. 
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The local smallness of Db means that for distributions ,u and A, there is an object 

Db(p,;1) in B which represents morphisms in D&, i.e., for which there is a natural 

bijection 

morphisms X + D&p, 2) in d 

morphisms p ,Xx + 2 . .Z, in (DLY)X 

If a site is given for 8, say with underlying category C, then the sheaf DS(p,i) is 

given by 

D&p, A)(c) = {natural transformations c. p + A}, c E C. 

For a fixed distribution p(, we have adjoint functors 

Definition 3.2. Let & denote a locally connected topos with components functor e!. 

For a distribution 3, on 8, we will refer to the object Db(e!,A) of & as the density of 

i. We denote this object by d;l. The functor d is the right adjoint of X HX .e!. 

Example 3.3. The density of e! is the terminal sheaf; de! = 1. This is because e! is 

the terminal distribution. 

We next relate the density of a distribution to the comprehensive, or pure dense/ 

complete spread, factorization of a geometric morphism. We will call the complete 

spread of this factorization of a geometric morphism (with locally connected domain) 

its associated complete spread. The domain of the associated complete spread is locally 

connected. 

Proposition 3.4. For X E 8, the complete spread corresponding to the copower X .e! 

is the associated complete spread of 8/X + 8, as in the following diagram: 

The pure dense p can be factored by the unit X + d(X.e!) as indicated below. 

8/X - ~/d(X.eJ - 9 
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Proof. Let 9 3 B denote the associated complete spread of b/X + 6. Let 1 denote 

an arbitrary distribution on B with corresponding complete spread F 5 &. We have 

the natural bijection 

morphisms e! . C, -+ 3.. CX in (Dc??)~ 

morphisms X .e! -+ 3, in (IM)l. 

The complete spread over &/A’ corresponding to the distribution 2. Cx on ,P/X is 

the pullback F/1*X -+ &/X (Proposition 1.5). The one corresponding to e! . CX is the 

identity geometric morphism on a/X. Geometric morphisms 9 + F over d are in 

bijection with geometric morphisms 6/X + F over 8, whence geometric morphisms 

8/X + F/i*X over a/X. Thus, cp has the universal property required of the complete 

spread corresponding to the copower X. e! 0 

One way to say that a geometric morphism g + 8 is localic is to say that there is 

a locale Y in d whose topos of sheaves S&(Y) is equivalent to 94 over 6. We may 

consider the associated local homeomorphism 

of a localic geometric morphism y over 8. The object E is the object of points of the 

locale Y, i.e., 

E = {&-internal frame morphisms O(Y) + Qd }, 

where Szc is the subobject classifier of 8, and where U(Y) denotes the frame in & 

which corresponds to Y. We recall that a spread is a localic geometric morphism [6, 

Proposition 1.31. 

Proposition 3.5. Let p E Db. Then dp is isomorphic to the associated local homeo- 
morphism of the complete spread corresponding to p: 
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In terms of complete spreads over 8, the counit (dp).e! + p is the second horizontal 
morphism in the following diagram: 

Proof. Let F E 6’. To be shown is that morphisms F -+ dp in d correspond to geo- 

metric morphisms Q/F + Y over 8. By definition, morphisms F --+ dp correspond to 

morphisms F .e! + p in II&. By Proposition 3.4, these correspond to geometric mor- 

phisms from the associated complete spread of F to Y over 8, whence to geometric 

morphisms b/F + Y over 8. 0 

Corollary 3.6. Let X E 8. If 8/X t & is a complete spread, then the unit X --+ d(X.e! ) 

is an isomorphism. 

Proof. This follows from Propositions 3.4 and 3.5. Cl 

4. Probability distributions and connected limits 

A finite connected limit is one whose diagram is finite, non-empty and connected. 

Finite connected limits can be freely adjoined to an arbitrary small category. Let us 

denote by C@ the finite connected limit completion of a small category C. We have 

the unit K:C+C@. 

Lemma 4.1. K is a jinal functor. 

Proof. Let D, denote the finite connected colimit completion of a small category D. 

DB can be constructed as the full subcategory of 9’ D0P determined by those presheaves 

which are finite connected colimits of representables. Then the canonical functor D + 

D, is an initial functor, so that, since C@ = (C”,p)‘P, the functor K is final. 0 

A probability distribution on a topos is a distribution which preserves the terminal 

object. The topos classifier of probability distributions on a topos 8’ is denoted by 

CB; the category of geometric morphisms 9 + C6 is naturally equivalence to the 

category of probability distributions & + 9. The existence of CB can be established 

by constructing it as a subtopos of A4& using a forcing topology [6, Theorem 3.151. 

The following result gives a direct construction of Cb. 
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Theorem 4.2. Let 8 denote an arbitrary topos presented by a site (C, J), so that M& 
is presented by (C*, J*), where C* is the jinite limit free completion of C. Then Cb 
can be constructed as the pullback 

in Top,~, where the bottom geometric morphism is that induced by the unique fac- 

torization of 6 through K: 

Proof. We must show that for an arbitrary topos 3, the category of 5valued proba- 

bility distributions on d is equivalent to the category of cones 

by an equivalence which is natural in 3. Suppose we are given a g-valued probability 

distribution. We have its corresponding geometric morphism 22 3 ME, and also its 

corresponding cosheaf K : C -+ Y. K has the property that %KS 1. Then K lifts to a 

functor K@ : C@ + 589 which preserves finite connected limits, and which furthermore, 

since K is final (Lemma 4.1), satisfies 2 K@ S 1. It follows that the left extension 
k* : #?op + 29 of K@ preserves finite connected limits and also 1. Therefore, k* is 

left exact, so that we have a geometric morphism k and a cone as above. 

Conversely, a cone such as above gives a cosheaf X : C --+ 3 corresponding to x, and 

at the same time a flat functor K : C@ + 23 corresponding to k. K satisfies %‘K E 1, so 

that, again since K is final, we have 2 (K . K) S 1 also. The commutativity of the cone 

gives that X and K. K coincide, so that the corresponding distribution is a probability 

distribution. 0 
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The following diagram (left) depicts the canonical factorizations of &>A48 through 

the bag-domain go&, and through the probability distribution classifier Cb. In terms 

of freely adjoining finite limits to a site C for 8, it corresponds to the center diagram. 

The remaining diagram describes the distributions classified. 

partial 
points 

/L 
poihs distributions 

pr6babihty 
distributions 

5. The Waelbroeck theorem for toposes (first version) 

Our goal in this section is to obtain a characterization of the algebras for the sym- 

metric monad A4 on Top,~. We will here characterize M-algebras in terms of a certain 

cocompleteness property (Theorem 5.4 below), and then in Section 6 in terms of a “lin- 

ear” structure (Theorem 6.4). We call these results Waelbroeck theorems for toposes, 

by analogy with [19]. 

One way to express the cocompleteness of an object in a bicategory is to ask for 

the existence of certain left Kan extensions. The following diagram depicts the left 

extension of a l-cell p along another one cp : 

We should not expect the existence of such extensions along every l-cell cp; it is 

natural to require restrictions on cp. For instance, consider when A, B,X are categories 

and we wish to express the small cocompleteness of X. In this case we would restrict 

cp by requiring that for every b E B, the comma category cp 1 b be small. In addition to 

requiring the existence of left extensions, we should expect that the Beck-Chevalley 

condition (BCC) for comma objects hold. In the example of categories and small 

cocompleteness, it holds for the comma object 

b 
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The following definition expresses in this manner a cocompleteness property pertaining 

to an object in the bicategory Top,~. We take the class of morphisms cp to be the 

class of Y-essential geometric morphisms. We will use the fact [6, Theorem 3.61, first 

discovered by Pitts, that in a comma object 

in Top?? in which q is Y-essential, $ is locally connected. 

Definition 5.1. A topos 9 (over 9’) will be said to be cocomplete (for Y-essential 

geometric morphisms) if it satisfies the following two conditions: 

1. 9 admits left Kan extensions along essential geometric morphisms. 

In other words, for every essential geometric morphism B 3 S-F”, precomposition 

with q has a left adjoint. 

2. The Beck-Chevalley condition for comma objects holds. This means that for every 

comma object 

in Top,~ in which cp is essential, the canonical natural transformation 

is an isomotphism. In other words, for any geometric morphism 

along I/J of p. K is canonically isomorphic to p composed with 

of p. 

$9 5 8, the extension 

the extension along cp 
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A geometric morphism % 5 %’ between toposes which are cocomplete in the above 

sense will be said to be cocontinuous (for essential geometric morphisms) if for 

any essential geometric morphism B s 2, and any “diagram” B 3 9, the canonical 

morphism C,(y p) =+ y. C, p is an isomorphism. 

We encourage the reader to review the fact [6, Theorem 3.11 that a topos 9 is an 

M-algebra if and only if 6 : % + M% has a left adjoint in Top,~. 

Proposition 5.2. M-algebras are cocomplete and M-homomorphisms are cocontin- 

uous. For an M-algebra M% 5 Y- and a geometric morphism 9 4 %, we have 
Z,p” 0. C,(6. p). 

Furthermore, we have Ca6 2 l~,f, Cd I,,- 2 0, and the canonical morphism 1.~ =+ Cs 

l,-. 6 is an isomorphism. 

M% ‘% 

Proof. Fix an essential geometric morphism 

M-algebras. Under the tindamental adjointness 

TopY(X, M%) N Cocts,y(%, X), 

93 2’“. We first work with free 

cp’ for M% is identified with composition with the inverse image fimctor q*. Then 

C, for M% can be identified with composition with the left adjoint q. Given this, 
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one verifies easily that Ca6 2 1~9. The BCC (for comma objects) for the free algebra 

MP follows because in a comma object: 

we have $1 K* 2 p* . cp!. Thus, free algebras are cocomplete. Now let M9 -% 9 de- 

note an arbitrary M-algebra. We have cr i 6. For any 9 3 5, define 

GP=o~c,(G~ p), (1) 

where on the right side, C, refers to the free algebra MB. The following series 

of bijections shows that this definition gives the left adjoint to cp’. Let X29 be 

arbitrary: 

The last bijection holds because 6 is an inclusion. A consequence of (1) is 

We now verify the BCC for the algebra 9. Referring to the above comma object, by 

(1) we have 

pQ,p = @(a. C,(6. p)) = CT. ptz,(6. p). 

By the BCC for free algebras, this is isomorphic to 

0. &)K”(d. p) = 0. &,(6. K'p) = r$K'p. 

The last equality is (1) again. 

Finally, we show that M-homomorphisms are cocontinuous. It is not difficult to 

verify that free homomorphisms, i.e., geometric morphisms of the form My, are co- 

continuous. Now let F 3 9’ be an arbitrary M-homomorphism. Then for cp essential, 
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and 939, by (1) for 9’ we have 

Since My is cocontinuous, this is isomorphic to 

where the last equality is by (1). 0 

Corollary 5.3. Let MP’ $9 denote an M-algebra. Let 6 5 Y be locally connected 

(i.e., let e be Y-essential). The left extension of a geometric morphism 8IP along 
e is isomorphic to o. q, where the point Y 3 MY corresponds to the distribution 

e!.**:F-9. 

If 6 3 9 3 F denotes the pure denselcomplete spread factorization of $, then 

c&p e c&k 

Proof. The first statement is seen to be true by examining the constructions in the 

Proof of Proposition 5.2. The second statement follows from the first because the 

distributions d! cp* and e! . I)* are isomorphic. 0 

Theorem 5.4 (Waelbroeck Theorem, first version). A topos is an M-algebra if and 
only tf it is cocomplete (Definition 5.1). A geometric morphism is an M-homomor- 
phism tf and only tf it is cocontinuous. For any topos P-, the topos MP is its free 

cocompletion. That is, tf 9 5 9 is a geometric morphism into a cocomplete topos 
9, then there is an essentially unique cocontinuous geometric morphism [ such that 

commutes. 
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Proof, Assume that a given topos Y is cocomplete. Let 0: MY --+ 9 denote the 
left extension C,( 1.~). We will show that G is, so that (9,~) is an M-algebra. Let 
X -% MB and SF 2 9 be arbitrary geometric morphisms, and consider the following 
comma object: 

We have the following natural bijections: 

C,p’ly *m 

by the BCC for the 

above comma object 

6.p=+d-p’m 

since 6 is an inclusion 

q”lMs:iS-m 

by Prop. 5.2 

It remains to show that a cocontinuous geometric morphism between cocomplete 
toposes (equivalently, M-algebras) is a homomorphism. Let 9 -$ F’ be such a geo- I 
metric morphism. We must show that the canonical natural transformation cr’ 1 My h 

7. CT is an isomorphism. There are canonical isomorphisms 
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to which we apply C;, giving the top row of the following diagram: 

The left vertical arrow is the counit of Ch i 6’. The right vertical arrow is an iso- 

mo~hism because y is assumed to be co~ontinuous. The bottom right mo~hism is 

the isomo~hism obtained by applying y to cr ” CS Iz. This diagram can be seen to 

commute by unraveling the adjoints. Next observe that the let? vertical arrow is an 

isomorphism. In fact, both a’ and My are M-homomorphisms, whence cocontinuous 

(Proposition 5.2), so that 

This shows that [ is an isomorphism. cl 

6. The Waelbroeck theorem for toposes (second version) 

For the second Waelbroeck theorem (Theorem 6.4 below) we shift our attention 

from essential geometric morphisms and comma objects to locally connected geometric 

morphisms and pullback squares. 

definition 6.1. A topos 9 (over 9) will be said to be a linear topos if it admits 

left Kan extensions along locally connected geometric mo~hisms (see Definition 5.1). 

Furthermore, we require that 9 satisfy the BCC for pullback squares. Explicitly, this 

means that for every pullback square 

in Top,~ in which cp is 

z;@ * h? =+ pp. c, 

is an isomorphism. A geometric morphism 8 3 & O--I between linear toposes will 

be said to be a linear geometric morphism if for any locally connected geometric 

locally connected, the canonical natural ~ansfo~ation 
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morphism $9 5 H, and any 9 1: 9, the canonical morphism C,(y . p) + y. C,p is an 

isomorphism (see Definition 5.1). 

The following fact is also shown in [ 171. 

Lemma 6.2. Assume there is given a comma object 

A h +B 

g 

I ;I 

k 

$ 

c f D 

in a 2-category. Also assume that k has a left adjoint 1. Then g has a left adjoint 

C z A such that the unit 1~ + g. m is an isomorphism. We also have h. m ” 1. f. 

Proof. Let n denote the unit of 1 -I k. The cone 

induces a l-cell C z A and isomorphisms i : 1~ 2 g. m and j : h . m g 1. f such that 

tm. fi=qf .kj. Let X&C andX % A be arbitrary l-cells. By the universal prop- 

erty of the given comma object, there is a natural bijection between 2-cells rn. c =+ a 

and cone 2-cells 

1.f.c 
X-B X “’ tB 

I I 

($1 
c 

w_$ k 
9.0 

I I 
ta k 

C-D 
f 

C ,‘D. 

The 2-cells 1. f c 4 h . a and c 3 g . a satisfy ta . f y = kfl. (q f )c, and this equation 

transposes under 1 -I k to t?l. I( f y) = /I. We conclude, since B is determined by y, that 

such pairs (p, y) are in bijection with 2-cells c 3 g. a. Note that the unit of m i g is 

the isomorphism i. 0 

Remark 6.3. When Lemma 6.2 is interpreted in toposes and geometric morphisms, the 

adjointness m -I g reads g* -1 g* = m* -i m*, so that g is a connected local geometric 

morphism and m is an essential inclusion for which m! is left exact. 
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Theorem 6.4 (Waelbroeck Theorem, second version). A topos is an M-algebra ij’ and 
only if it is a linear topos. A geometric morphism is an M-homomorphism if and 
only if it is linear. For a topos 9, A49 is the free linear topos, i.e., an arbitrary 

geometric morphism 9 + 3 into a linear topos lifts uniquely to a linear geometric 
morphism A49 -+ 3. 

Proof. Let Y denote an arbitrary topos over 9’. If 9 is an M-algebra, then it can 

be shown that 9 is a linear topos as in the proof of Proposition 5.2, proceeding first 

with free M-algebras. Note that in a pullback 

in which cp is locally connected, $ is locally connected and we have II/ . rc* E p* . cp!. 

Now assume that 9 is a linear topos. We will show that Y is cocomplete (Defi- 

nition 5.1), so that by Theorem 5.4, 9 is an M-algebra. Let ‘3 3 ~9 be an arbitrary 

essential geometric morphism and consider the comma object 

in Topy. We know that II/ is locally connected. By Lemma 6.2, K has a left adjoint 

59 3 f for which the unit is an isomorphism, and such that cp E II/. CT. For an arbitrary 

3 5 9, define 

c,x = C& . K). 

The following series of natural bijections shows that C, -I cp”: 

q&.K)*Y 

x=+-y.*.0 

It remains to show that the BCC for comma objects holds. A comma object 
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in which cp is essential, and therefore II/ is locally connected, can be rewritten as the 

following composite of a pullback and a comma object: 

Note that also $’ is locally connected. The BCC for pullbacks now gives the BCC for 

comma objects. 

The statement concerning M-homomorphisms can be proved in a manner similar to 

the above. 0 

The algebras for the bagdomain monad 93~ have a characterization comparable to 

the one for M-algebras in Theorem 6.4. The class of geometric morphisms having 

totally connected components is closed under arbitrary pullback (Proposition 1.4) so 

the BCC makes sense for this class. 

Theorem 6.5. A topos is a .@L-algebra if and only if it admits left extensions along 

geometric morphisms with totally connected components, so that the BCC ,for 

pullbacks holds. 

Proof. (Johnstone [ 11, Theorem 5.11). Johnstone has characterized 29L-algebras as 

those toposes 9 having the property that for every topos 29, Topy(Y,F) has 3- 

indexed coproducts, which are natural in $9. This property is easily seen to be equiva- 

lent to the property that the topos admit left extensions along local homeomorphisms, 

such that the BCC for pullbacks holds. We shall show that this is equivalent to the 

property stated in the theorem. Let 9 denote an arbitrary topos over Y which admits 

left extensions along local homeomorphisms. Let 9 3 92 and 9 5 9 be arbitrary geo- 

metric morphisms and assume that d has totally connected components. We want to 

show that Cdx exists. As in the proof of Proposition 1.4, we factor d as 9 5 Y/I L 9 

for which there is B/I 3 9 over 9 satisfying d^-i p. Define Cdx to be C,(x . p). For 

any 9 L 9, we have natural bijections 

x=+- y.d, 
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which shows that Id -Id’. That the BCC can be lifted from local homeomorphisms to 

geometric morphisms with totally connected components follows easily. 0 

Remark 6.6. The algebras for the probability distribution classifier (see Section 4) 

can be characterized as those toposes admitting left extensions along connected locally 

connected geometric morphisms, such that the BCC holds. We omit the proof, as it is 

similar to the proof of Theorem 6.4. 

We will refer to an M-algebra for which the carrier topos is locally connected as a 

locally connected M-algebra. Recall that a topos B is locally connected if and only 

if Mb has a terminal point [6, Theorem 3.101. We conclude this section by showing 

that the action of a locally connected M-algebra preserves this terminal point. 

Proposition 6.7. Let Mb 3 & be a locally connected M-algebra, and let Y LM8 

denote the terminal point of MB. Then aT is terminal. In particular, 6 is totally 

connected. (A topos is totally connected if and only if it has a terminal point.) 

Proof. We will show that aT is pure dense, hence terminal by [6], Proposition 3.12. 

We have &?*M& satisfying G -16 and ~6% 1 6. We consider the unit T 2 6aT in 

terms of complete spreads over 8, as in the following diagram: 

The geometric morphism cp is the complete spread of the pure dense/complete spread 

factorization of oT: 

The complete spread cp also appears in the following comma object: 
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The uniqueness of the universal property of this comma object shows that 

commutes. Observe that ye is an inclusion since spreads are localic [6, Proposition 1.31, 

and since a point of a locale is an inclusion. By Proposition 1.2, aT is pure 

dense. 0 

Corollary 6.8. Let M& 5 6 be a locally connected algebra (with terminal point 

Y 5 8, by 6.7). Let F $ Y be locally connected, and let 9 3 8 be an arbitrary 

pure dense geometric morphism. Then the left extension of p along j’ is isomorphic 

to T. 

Proof. By Corollary 5.3, C,fpE CJ . q, where the point Y$ Mb corresponds to the 

distribution f! . p* : d + Y. If p is pure dense, this distribution is isomorphic to e!, 

so that q must be isomorphic to the terminal point of M8. By Proposition 6.7, we are 

done. 0 

7. Complete spreads and the fundamental group of a topos 

The subject of the fundamental group of a topos has a long and ongoing “trajectory” 

(see [7] for a brief review and references). The Grothendieck fundamental group G 

of a locally connected topos 8 is a (localic) group which represents first-degree co- 

homology of 8 with coefficients in (discrete) groups. Its classifying topos S?G, the 

category of continuous G-sets, may be identified with the full subcategory of d de- 

termined by those objects which are sums of locally constant objects. If in addition, 

& is locally simply connected [I], the latter reduces to the full subcategory of locally 

constant objects in 8. Moreover, in the stronger case where & is locally paths simply 

connected, the Grothendieck fundamental group can be constructed “by paths” [7], i.e., 

it is equivalent to the (Moerdijk- Wraith) paths fundamental group of 6. 

There is a connection between complete spreads and the fundamental group of 

a topos. That locally constant objects are complete spreads (7.3), and that in a con- 

nected presheaf topos the converse holds as well (7.9), provide evidence for this. The 
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general question of the converse is still open, as are most questions about the category 

of objects in a topos which are complete spreads (Definition 7.2). 

We have seen that complete spreads are stable under pullback along a local homeo- 

morphism (1.5). We begin this section by showing that they are reflected under pullback 

along a surjective local homeomorphism. 

Proposition 7.1. “(Complete) spread” is a local property. Let & 3 8 he an arbitrary 

geometric morphism (over a base topos Y), and assume that 8 is locally connected. 

Let U be a cover of 1 in 9. If the pullback cpu : blcp*U --f F/U is a (complete) 

spread, then so is rp. 

Proof. We first show that if cpu is a spread, then so is cp. To do this recall that the 

notion of a spread in the theory of geometric morphisms [6, Definition. 1.11 is defined 

in terms of dejinable morphisms [2, p. 1391. Fix E E 8. If cpr/ is a spread, there is 

a commutative square 

for some F --+ U, where m is definable in $J’p* U. The coproduct functors &IX -% d 

preserve definable morphisms, so m is definable in 8, and we have the diagram 

in 8. The second morphism above is an epimorphism because U + 1 is. 

Now assume that qu is a complete spread. Factor q as a pure dense geometric 

morphism followed by a complete spread (where the middle topos is locally connected), 

and form their respective pullbacks along 9/U ---f 9. 
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We will show that p is both an inclusion and a surjection. By the first paragraph, 

cp is a spread, so p is also [6, Proposition 1.21, and pure dense spreads are inclusions 

[6, Proposition 2.41. By Proposition 1.3, pr/ is pure dense, and by 1.5, $U is a complete 

spread. By the uniqueness of the pure dense/complete spread factorization, pu must 

be an equivalence, and therefore p is a surjection. 0 

Definition 7.2. An object X in a locally connected topos & over Y will be said to be 

a complete spread if the geometric morphism 6/X + 8 is a complete spread (over 9). 

Recall that an object X in a topos 8 is said to be locally constant if there is U E d 

with global support and I E 9’ such that U xX N U x e*I over U. The object U is 

said to split X. 

Theorem 7.3. Locally constant objects in a locally connected topos are complete 

spreads. 

Proof. We first show that constant objects in a locally connected topos are complete 

spreads. Let 8 denote a locally connected topos with e! -le*. Let I be an arbitrary 

object of 9’. We want to show that S/I --+ 6 is a complete spread. If (C,J) is a site 

for 8, then the square 

is a pullback of toposes. Since 8 is locally connected, we may assume that the chosen 

site (C,J) has the property that for all objects c E C, e!c = 1. Then the cosheaf C + Y 

corresponding to the cocontinuous functor 8 
I* I 
+ F/I 2 Y is the constant cosheaf c H I. 

The discrete opfibration corresponding to this is C x I ---f C, and the complete spread 

it defines is the following pullback: 

This coincides with the first pullback, so &/I -+ 8 must be a complete spread. 
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The result for locally constant objects now follows from Proposition 7.1. 0 

Is every complete spread object of a topos locally constant? We take the opportunity 

to report some preliminary findings. 

Recall that a topos is said to be simply connected if every locally constant object 

is constant. 

Proposition 7.4. If the connected components functor of a locally connected topos 
preserves products, then every complete spread object of the topos is constant. In 

particular, such toposes are simply connected (by Theorem 7.3). 

Proof. Let 8 denote a locally connected topos. If e! preserves products, and if X E 6, 

then X .e! E I .e!, where I is e!X. Let X be a complete spread. Then by Corollary 3.6, 

X E d(X.e!), where d is the density functor (Definition 3.2). We have 

X ” d(X.e!) ” d(l.e!) ” I, 

where I is e!X. This says that X is constant. 0 

We now take our investigation in a different direction. We begin with a basic char- 

acterization of objects in a topos which are complete spreads. Recall [2] that a topos 

is locally connected if and only if a site for the topos can be chosen such that the con- 

stant presheaves are sheaves. It is also true that an inclusion of a topos into presheaves 

is pure dense if and only if the constant presheaves are sheaves. Thus, every locally 

connected topos is a pure dense subtopos of a presheaf topos. 

Proposition 7.5. Let 8 be locally connected with pure dense inclusion & -+ 9”“‘. Let 
X be an arbitrary object of &, and let Q denote the initial factor of X (when X 

is considered as a discrete fibration over C). Let q denote the geometric morphism 

induced by Q, and p the pullback of q along 6 ---t P? Then X is a complete spread 
if and only tf p is an equivalence. 

Proof. The discrete opfibration over C associated with X as an object of d is the 

functor c H e!(X x c). The one associated with X as an object of Ycop is the functor 

c H DC = %’ (X x c). These two opfibrations are isomorphic because d + Yc” was 
chosen to be pure dense. Thus, the geometric morphism 9 + F in the above diagram 

(right) is the associated complete spread of X. Cl 



M. Bunge, J. Funk1 Journal of Pure and Applied Algebra 130 (1998) 49-84 79 

We next recall a fact about locally constant objects first reported by Barr and 

Diaconescu [l] (herein, Proposition 7.6). Let Q denote an arbitrary locally connected 

topos. For objects A, E E 8, the pairing of the unit of e! -1 e* with the projection 

E xA+A is a morphism 

4 :ExA+e*e!(ExA)xA 

in 8, which is natural in A and E. We also have the projection 

Now fix an object U E Q. We can regard a component c E e!U as a subobject of U 

in 8. Consider the coproduct of the morphisms r; as c ranges over the components 

of u: 

s~:ExU+ u e*e!(E x c) x c. 
CEL?lU 

The object on the right we will denote by TE. The coproduct over e! U of the projections 

7~; gives a morphism 

such that the composite XE . TE is equal to the projection E x U -+ U. 

Proposition 7.6 (Barr and Diaconescu [l]). Let 8 be connected and locally connec- 
ted. Let X be an object of 8, and let U be a cover of 1. Then U splits X if and 

only if zx is an isomorphism. 

We identify the following condition on an object X of a locally connected topos 8. 

V There is a site C for 8 so that & + Y ‘Op is pure dense (see Proposition 7.5) and 

such that for every morphism c z d in C, the map 

e!(X x m) : e!(X x c) + e!(X x d) 

(equivalently, by Proposition. 7.5, the map 2(Xx,): 2(Xx+ 2(Xxd)) 

is an isomorphism. 

Proposition 7.7. Let X be an object of a connected locally connected topos 8. If X is 

a complete spread, and satisfies condition V (for site C), then X is locally constant, 
split by the coproduct u{c 1 c E C}. 

Proof. We will show that ZX, for U = u{c 1 CE C}, is an isomorphism (Proposi- 

tion 7.6). The components of this U are the objects c. First, we have some notation 
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and terminology to define. Consider the category C’ whose objects are the morphisms 

of C, and whose morphisms are commutative squares in C. There are the domain and 

codomain functors do, dl : C’ + C. The domain functor do is a split fibration (8, is 

a split opfibration), and so can be thought of as a category object in Ycop. We denote 

this category object by U. The object U is (the associated sheaf of) the “objects” 

presheaf of U. Let D 2 C denote an arbitrary discrete opfibration, and consider the 

pullbacks 

2” 
D' - D T -D 

I I D $D I D 

of functors and small categories. Observe that by composing with 80, we can regard 

8TD as a discrete opfibration on U in the topos 9’“. We denote this discrete opfi- 

bration by T -% U. By sheafifying, we regard rc as a discrete opfibration in 8, i.e., as 

an object of 8”. There is a functor 

over C’ which sends an object (c L d,x E DC) to the object (c L d, Df(x)). If 

every Df is an isomorphism, then 0 is an isomorphism. 

We return to the task at hand. Consider the comprehensive factorization 

of X. For this D, we have the functor 8 and the discrete opfibration T 5 U in &, as 

explained in the previous paragraph. The sheaf of objects for this T is the sheaf TX, 

defined in the paragraph preceding Proposition 7.6. There is the pullback a,*Q, 

xxu 
$Q 

- D- 

X -D 
Q 
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which when composed with B gives the following commutative diagram of fimctors 

and categories in &: 

xxu e.a;Q + 
\jT 

U 

The ftmctor 0 . d,*Q is a morphism of b”, and its “objects” part is the morphism rX 

of Proposition 7.6. We have the following pullbacks of toposes: 

In the above diagram, 9 is the associated complete spread of X, and q and r denote 

the geometric morphisms induced by Q and a,*Q, respectively. Since X is assumed to 

be a complete spread, q is an equivalence, so that Y is also. Condition V says that 8 is 

an isomorphism, so that the geometric morphism induced by 8, denoted 0 in following 

diagram, is an equivalence: 

We conclude that zx is an isomorphism. 0 

Example 7.8. Proposition 7.7 is false without the hypothesis that X is a complete 

spread, as the following simple example shows: 

. 

-8 
x: 

1 
. * 
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A solid dot indicates that the endpoint is included. Here X is a surjective local home- 

omorphism and the connected open sets in the bottom space are a base {U} such that 

every rcs(X-‘U) + ns(X-’ U’) is an isomorphism (i.e., V is satisfied), but X is not 

a covering space. This example can be modified so that the top space is connected. 

Consider as a bottom space a circle and a tangent closed line segment. 

. 0 
P 

Take as the top space the connected 2-to-1 cover of the circle with the same two 

line segments as above tangent to each of the points of the fiber of the point p. This 

provides a surjective sheaf space for which the top space is connected, and such that 

condition V is satisfied, but the sheaf space is not locally constant. 

Corollary 7.9. In a connected presheaf topos, the locally constant objects coincide 

with the complete spread objects. A connected presheaf topos is locally simply 

connected, and its fundamental group is equivalent to its full subcategory of com- 

plete spread objects. 

Proof. Let D denote a small connected category. If a presheaf X on D is a complete 

spread, then it is a discrete opfibration (Proposition 2.2(3)) so that for every morphism 

c 5 d in D, the transition map Xm is an isomorphism (Remark 2.3). Then for every 

dED, Xd E %(Xxd), and every map 

5(Xxm): %(Xx,)+ 2(Xxd) 

is an isomorphism. By Proposition 7.7, X is locally constant. 

The second statement holds because, as we have just shown, the presheaf u{d 1 d E 

D} splits every complete spread object. But every locally constant object is a complete 

spread. 0 

Example 7.8 shows that condition V is not equivalent to X being locally constant; 

however, we can say the following. 

Proposition 7.10. Let X be an object of a connected locally connected topos Q. Then 

X satis$es V if and only if the associated complete spread of X is a locally constant 

object of 8. 

Proof. Assume that X satisfies V. By Corollary 7.9, the discrete opfibration D in the 

comprehensive factorization of X must be a locally constant presheaf. The initial factor 

of this factorization can then be regarded as a natural transformation X 4 D in Yco”. 
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The associated sheaf of D is again locally constant and it is the associated complete 

spread of X. 

We only sketch a proof of the converse. Let J? denote the associated complete spread 

of X, a locally constant object of 8. Then there is a site C for d (such that 8 + YcoP is 

pure dense and) such that every restriction map 2?rn : J?d -+ xc is an isomorphism. For 

this site we have 2?c Z e!(J? x c) for every c, so every e!(J? x m) is an isomorphism. 

Then every e!(X x m) is an isomorphism because X +x is pure dense. 0 

We close with a question posed by Lawvere. Is there a suitable single universe 

in which complete spreads and local homeomorphisms over a topos & coexist and 

interact? Gluing along the density functor d : A48 + 8 produces such a universe, but 

the question requires further study. Other (still open) questions about distributions on 

toposes can be found in the writings and lectures of Lawvere (e.g., [14, 151). 
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